Instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from these instructions.

NAME

Alinity s HTLV I/II Reagent Kit
Human T-Lymphotropic Virus Types I and II (E coli, Recombinant)
Antigen and Synthetic Peptides

INTENDED USE

The Alinity s HTLV I/II assay is a chemiluminescent microparticle immunoassay (CMIA) used for the qualitative detection of antibodies to human T-lymphotropic virus Type I and/or human T-lymphotropic virus Type II (anti-HTLV I/HTLV II) in human serum and plasma specimens on the Alinity s System.

The Alinity s HTLV I/II assay is intended to screen individual human donors, including volunteer donors of whole blood and blood components, and other living donors for the presence of anti-HTLV I/HTLV II. The assay is also intended for use in testing serum and plasma specimens to screen organ donors when specimens are obtained while the donor’s heart is still beating, and in testing serum specimens to screen cadaveric (non-heart-beating) donors. It is not intended for use on cord blood specimens.

SUMMARY AND EXPLANATION OF THE TEST

Human T-lymphotropic virus Type I (HTLV I) and Type II (HTLV II) are closely related but distinct retroviruses that can infect humans. HTLV I causes adult T-cell leukaemia (ATL) and HTLV I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although HTLV II is less pathogenic than HTLV I, it has been associated with a neurological disease similar to HAM/TSP, and with chronic inflammatory arthropathy.

HTLV I infection is endemic in south Japan, the Caribbean, some regions of Africa, Central and South America, and also found in Melanesia, the Middle East, and central and northern Australia. HTLV II infection is endemic to a number of indigenous American Indian populations. Both HTLV I and HTLV II are distributed worldwide.

HTLV I and HTLV II were the first discovered human retroviruses, both viruses belonging to the oncovirus subfamily of retroviruses. Unlike HIV retroviruses, HTLV I and HTLV II show minimal genetic variation, mainly in the env, which defines the HTLV subtypes. HTLV I has six reported subtypes (subtypes A to F). HTLV II has four reported subtypes (subtypes A to D). However, there is no reported association of a particular HTLV I or HTLV II subtype with a specific disease. Transmission of HTLV I and HTLV II infection occurs via transfusion of infected cellular blood products, via breast feeding, sexual contact, and sharing of contaminated needles and syringes by intravenous drug users. Mother-to-child transmission of HTLV II has recently been reported.

HTLV I and HTLV II antibodies develop within 4 to 8 weeks after infection. Most individuals infected with HTLV I and HTLV II are asymptomatic, and the infection is lifelong.

HTLV I/HTLV II antibody assays are used to identify individuals infected with HTLV I or HTLV II and to prevent transmission of the virus to recipients of blood, blood components, and organs.

BIOLOGICAL PRINCIPLES OF THE PROCEDURE

This assay is a two-step immunoassay for the qualitative detection of antibodies to HTLV I and HTLV II in human serum and plasma using chemiluminescent microparticle immunoassay (CMIA) technology.

Sample, HTLV I/HTLV II coated paramagnetic microparticles, and assay diluent are combined and incubated. The antibodies to HTLV I/HTLV II present in the sample bind to the HTLV I/HTLV II synthetic peptides and HTLV II recombinant antigen coated microparticles. The mixture is washed, HTLV I/HTLV II synthetic peptides and HTLV I recombinant antigen acridinium-labeled conjugate is added to create a reaction mixture and incubated. Following a wash cycle, Pre-Trigger and Trigger Solutions are added.

The resulting chemiluminescent reaction is measured as relative light units (RLU). There is a direct relationship between the amount of antibodies to HTLV I/HTLV II in the sample and the RLU detected by the system optics.

The presence or absence of antibodies to HTLV I/HTLV II in the sample is determined by comparing the chemiluminescent RLU in the reaction to the cutoff RLU determined from an active calibration.

For additional information on system and assay technology, refer to the Alinity s System Operations Manual, Section 3.

REAGENTS

Kit Contents

Alinity s HTLV I/II Reagent Kit 06P07

Volumes (mL) listed in the table below indicate the volume per cartridge.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Trigger Solution</td>
<td>26.7 mL</td>
</tr>
<tr>
<td>Generic Trigger Solution</td>
<td>26.5 mL</td>
</tr>
<tr>
<td>Assay Diluent</td>
<td>27.0 mL</td>
</tr>
<tr>
<td>Positive Control HTLV I and HTLV II synthetic peptides and HTLV II recombinant antigen coated microparticles</td>
<td>5000 units (RLU)</td>
</tr>
<tr>
<td>Negative Control HTLV I and HTLV II synthetic peptides and HTLV II recombinant antigen acridinium-labeled conjugate</td>
<td>5000 units (RLU)</td>
</tr>
<tr>
<td>Positive Control HTLV I and HTLV II synthetic peptides and HTLV I recombinant antigen acridinium-labeled conjugate</td>
<td>5000 units (RLU)</td>
</tr>
<tr>
<td>Negative Control HTLV I and HTLV II synthetic peptides and HTLV II recombinant antigen coated microparticles</td>
<td>5000 units (RLU)</td>
</tr>
<tr>
<td>Positive Control HTLV I and HTLV II synthetic peptides and HTLV I recombinant antigen coated microparticles</td>
<td>5000 units (RLU)</td>
</tr>
<tr>
<td>Negative Control HTLV I and HTLV II synthetic peptides and HTLV II recombinant antigen acridinium-labeled conjugate</td>
<td>5000 units (RLU)</td>
</tr>
</tbody>
</table>

06P0760

Tests per cartridge | 500 |
Number of cartridges per kit | 10 |
Tests per kit | 5000 |

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay</td>
<td>26.7 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microparticles</td>
<td>27.0 mL</td>
</tr>
<tr>
<td>Conjugate</td>
<td>26.5 mL</td>
</tr>
<tr>
<td>Assay Diluent</td>
<td>26.7 mL</td>
</tr>
</tbody>
</table>

G92069R01
B6P0S0
Warnings and Precautions

- For In Vitro Diagnostic Use
- Performance characteristics of this product have not been established for laboratory diagnosis of HTLV I/II infection.

Safety Precautions

CAUTION: This product requires the handling of human specimens. It is recommended that all human-sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens. Biosafety Level 2 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents.36-39

The following warnings and precautions apply to:

- WARNING
 - Contains methylisothiazolone and sodium azide.
 - H317 May cause an allergic skin reaction.
 - EUH032 Contact with acids liberates very toxic gas.

Prevention

- P261 Avoid breathing mist / vapors / spray.
- P272 Contaminated work clothing should not be allowed out of the workplace.
- P280 Wear protective gloves / protective clothing / eye protection.

Response

- P302+P352 IF ON SKIN: Wash with plenty of water.
- P333+P313 If skin irritation or rash occurs: Get medical advice / attention.
- P362+P364 Take off contaminated clothing and wash it before reuse.

Disposal

- P501 Dispose of contents / container in accordance with local regulations.

The following warnings and precautions apply to:

- WARNING
 - Contains polyethylene glycol octylphenyl ether (Triton X-100), methylisothiazolone and sodium azide.
 - H317 May cause an allergic skin reaction.
 - H319 Causes serious eye irritation.
 - EUH032 Contact with acids liberates very toxic gas.

Prevention

- P261 Avoid breathing mist / vapors / spray.
- P264 Wash hands thoroughly after handling.
- P272 Contaminated work clothing should not be allowed out of the workplace.
- P280 Wear protective gloves / protective clothing / eye protection.

Response

- P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- P337+P313 If eye irritation persists: Get medical advice / attention.
- P302+P352 IF ON SKIN: Wash with plenty of water.
- P333+P313 If skin irritation or rash occurs: Get medical advice / attention.
- P362+P364 Take off contaminated clothing and wash it before reuse.

Disposal

- P501 Dispose of contents / container in accordance with local regulations.

Safety Data Sheets are available at www.transfusion.abbott or contact your local representative.

For a detailed discussion of safety precautions during system operation, refer to the Alinity’s System Operations Manual, Section 8.

Reagent Handling

- Do not invert reagent cartridges.
- Upon receipt, reagent cartridges can be used immediately or stored in an upright position.
- If a reagent cartridge is dropped, place in an upright position for 1 hour before use to allow bubbles that may have formed to dissipate.
- Reagents are susceptible to the formation of foam and bubbles. Bubbles may interfere with the detection of the reagent level in the cartridge and cause insufficient reagent aspiration that may adversely affect results.

For a detailed discussion of reagent handling precautions during system operation, refer to the Alinity’s System Operations Manual, Section 7.
Specimen Collection and Preparation for Analysis

Specimen Types
The specimen types listed below were verified for use with this assay. Other specimen types and anticoagulants have not been verified with this assay.

<table>
<thead>
<tr>
<th>Specimen Types</th>
<th>Anticoagulants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Plasma</td>
<td>Dipotassium EDTA (including plasma preparation tubes)</td>
</tr>
<tr>
<td></td>
<td>Tripotassium EDTA</td>
</tr>
<tr>
<td></td>
<td>Lithium heparin (including plasma separator tubes)</td>
</tr>
<tr>
<td></td>
<td>Sodium citrate</td>
</tr>
<tr>
<td></td>
<td>Sodium heparin</td>
</tr>
<tr>
<td></td>
<td>ACD-A</td>
</tr>
<tr>
<td></td>
<td>ACD-B</td>
</tr>
<tr>
<td></td>
<td>CP2D</td>
</tr>
<tr>
<td></td>
<td>CPD</td>
</tr>
<tr>
<td></td>
<td>CPDA-1</td>
</tr>
</tbody>
</table>

- Liquid anticoagulants may have a dilution effect resulting in lower S/CO values for individual specimens.
- Performance has not been established for the use of plasmapheresis specimens.
- Performance has not been established for the use of umbilical cord blood or bodily fluids such as urine, saliva, semen, amniotic fluid, cerebrospinal fluid, or pleural fluid.
- Performance has been established for the use of cadaveric serum specimens (including specimens collected post-mortem, non-heart-beating) that have been collected up to 24 hours after death.\(^40\) Follow general standards and/or regulations for collection, storage and handling.
- Performance has not been established for the use of cadaveric plasma specimens.
- Testing of cadaveric serum specimens from patients with plasma dilution due to transfusions of > 2000 mL of blood or colloids within 48 hours, or > 2000 mL of crystalloids within 1 hour (or any combination thereof) prior to collection of the specimens has not been verified.
- The system does not provide the capability to verify specimen types. It is the responsibility of the operator to verify that the correct specimen types are used with the assay.

Specimen Conditions
- Do not use:
 - heat-inactivated specimens
 - pooled specimens
 - grossly hemolyzed specimens
 - specimens with obvious microbial contamination
 - specimens with fungal growth
- For accurate results, serum and plasma specimens should be free of fibrin, red blood cells, and other particulate matter.
- To prevent cross contamination, use of disposable pipettes or pipette tips is recommended.

Instrument Procedure
The Alinity HTLV I/II Assay File must be installed on the Alinity System prior to performing the assay.

Indications of Reagent Deterioration
Deterioration of the reagents may be indicated when a calibration error occurs or a control value is out of the specified range. Associated test results are invalid, and samples must be retested. Assay recalibration may be necessary.

For troubleshooting information, refer to the Alinity System Operations Manual, Section 10.

Reagent Storage
- Do not freeze.

<table>
<thead>
<tr>
<th>Storage Temperature</th>
<th>Maximum Storage Time</th>
<th>Additional Storage Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unopened 2 to 8°C</td>
<td>Until expiration date</td>
<td>Store in upright position.</td>
</tr>
<tr>
<td>Opened 2 to 15°C</td>
<td>15 days after opening*</td>
<td>Discard after 15 days.</td>
</tr>
</tbody>
</table>

* Includes time on board the system.

For information on unloading reagents, refer to the Alinity System Operations Manual, Section 5.

Reagents may be stored on or off the system. If removed from the system, store reagents with new replacement caps in an upright position at 2 to 15°C. For reagents stored off the system, it is recommended that they be stored in their original trays or boxes to ensure they remain upright.

For information on printing assay parameters, refer to the Alinity System Operations Manual, Section 5.

For a detailed description of system procedures, refer to the Alinity System Operations Manual.
Preparation for Analysis
Failure to follow the specified centrifugation procedure may give erroneous or inconsistent test results.

- Clear, nonhemolyzed specimens should be used when possible.
- Specimens containing visible particulate matter may give erroneous or inconsistent test results.
- Specimens should be free of bubbles. Remove bubbles with an applicator stick before analysis. Use a new applicator stick for each specimen to prevent cross contamination.
- Prior to centrifugation, previously frozen specimens must be mixed gently and thoroughly after thawing.
- All specimens must be centrifuged between 30 000 - 75 000 g-minutes.
- All specimens must be tested or retested within 48 hours of initial centrifugation. After 48 hours, these specimens need to be recentrifuged between 30 000 - 75 000 g-minutes.

The acceptable time and force ranges that meet this criterion are listed in the table below.

<table>
<thead>
<tr>
<th>Centrifugation Time (Minutes)</th>
<th>RCF (x g)</th>
<th>g-Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3000</td>
<td>30 000</td>
</tr>
<tr>
<td>15</td>
<td>2000 - 3000</td>
<td>30 000 - 45 000</td>
</tr>
<tr>
<td>20</td>
<td>1500 - 3000</td>
<td>30 000 - 60 000</td>
</tr>
<tr>
<td>25</td>
<td>1300 - 3000</td>
<td>32 500 - 75 000</td>
</tr>
</tbody>
</table>

Convert rpm to RCF as follows: \(RCF = 1.12 \times r_{\text{max}} \left(\frac{\text{rpm}}{1000} \right)^2 \)
Convert RCF to rpm as follows:
\[\text{rpm} = 1000 \times \sqrt{\frac{\text{RCF}}{1.12 \times r_{\text{max}}}} \]

- **RCF** - The relative centrifugal force generated during centrifugation.
- **rpm** - The revolutions per minute of the rotor on which the specimens are being spun (usually the digital readout on the centrifuge will indicate the rpm).
- **Centrifugation Time** - The time should be measured from the time the rotor reaches the required RCF or rpm to the time it begins decelerating.
- **r_{\text{max}}** - Radius of the rotor in millimeters. The radius measured is dependent on whether the rotor is a fixed angle rotor or a swinging bucket rotor. This value is typically provided with the rotor by the manufacturer. For the fixed angle rotor, \(r_{\text{max}} \) is the measure of the distance from the rotor axis (center) to the bottom of the specimen tube in the rotor or rotor adapter. For the swinging bucket rotor, \(r_{\text{max}} \) is the measure of the distance from the rotor axis (center) to the bottom of the specimen tube in the rotor adapter or bucket at full extension.

NOTE: If custom tube adapters (i.e., adapters not defined by the centrifuge manufacturer) are used, then the radius \(r_{\text{max}} \) should be manually measured in millimeters and the RCF calculated.

g-minutes - The unit of measure for the product of RCF (x g) and centrifugation time (minutes).

Specimen Storage

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Maximum Storage Time</th>
<th>Special Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living Donor Serum/ Plasma</td>
<td>Room temperature (15 to 30°C)</td>
<td>7 days</td>
<td>Specimens may be stored on or off the clot, red blood cells, or separator gel.</td>
</tr>
<tr>
<td></td>
<td>2 to 8°C</td>
<td>14 days</td>
<td>Specimens may be stored on or off the clot, red blood cells, or separator gel.</td>
</tr>
<tr>
<td></td>
<td>-20°C or colder</td>
<td>3 months</td>
<td>Remove serum or plasma from the clot, red blood cells, or separator gel.</td>
</tr>
</tbody>
</table>

- Living donor specimens stored at -20°C or colder for greater than 3 months may be used for informational purposes (e.g., lookback testing, discordant sample testing, clinical and validation testing).
- Storage at a combination of 15 to 30°C and 2 to 8°C may not exceed 14 days (inclusive of shipping time) and cannot exceed the maximum durations listed in the table above.
- Performance has not been established for living donor specimens that have undergone more than 6 freeze/thaw cycles.

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Temperature</th>
<th>Maximum Storage Time</th>
<th>Special Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadaveric Serum</td>
<td>Room temperature (15 to 30°C)</td>
<td>3 days</td>
<td>If specimens are not processed directly after initial centrifugation, it is recommended to remove the supernatant from the clot, red blood cells or separator gel until further processing.</td>
</tr>
<tr>
<td></td>
<td>2 to 8°C</td>
<td>14 days</td>
<td>If specimens are not processed directly after initial centrifugation, it is recommended to remove the supernatant from the clot, red blood cells or separator gel until further processing.</td>
</tr>
<tr>
<td></td>
<td>-20°C or colder</td>
<td>3 months</td>
<td>If specimens are not processed directly after initial centrifugation, it is recommended to remove the supernatant from the clot, red blood cells or separator gel until further processing.</td>
</tr>
</tbody>
</table>

- Performance has not been established using cadaveric specimens stored at -20°C or colder for greater than 3 months.
- Storage at a combination of 15 to 30°C and 2 to 8°C may not exceed 14 days (inclusive of shipping time) and cannot exceed the maximum durations listed in the table above.
- Performance has not been established for cadaveric specimens that have undergone more than 6 freeze/thaw cycles.
Specimen Shipping
Package and label specimens in compliance with applicable state, federal, and international regulations covering the transport of clinical specimens and infectious substances.

PROCEDURE

Materials Provided
06P07 Alinity s HTLV I/II Reagent Kit

Materials Required but not Provided
- Alinity s HTLV I/II Assay File
- 06P0703 Alinity s HTLV I/II Calibrator Kit
- 06P0720 Alinity s HTLV I/II Assay Control Kit
- 06P0724 Alinity s HTLV I/II Release Control Kit
- Alinity Trigger Solution
- Alinity Pre-Trigger Solution
- Alinity s Concentrated Wash Buffer

For information on materials required for operation of the system, refer to the Alinity s System Operations Manual, Section 5.

For information on materials required for maintenance procedures, refer to the Alinity s System Operations Manual, Section 9.

Assay Procedure
For a detailed description of how to run an assay, refer to the Alinity s System Operations Manual, Section 5.
- Primary tubes may be on board the system for up to 10 hours.
- If using primary or aliquot tubes, refer to the Alinity s System Operations Manual, Section 4 to ensure sufficient specimen is present.
- To minimize the effects of evaporation, verify adequate sample cup volume is present prior to running the test.
- Maximum number of replicates sampled from the same sample cup: 10
 - 3 hours on the reagent and sample manager:
 - Sample volume for first test: 300 µL
 - Sample volume for each additional test from same sample cup: 100 µL
 - > 3 hours on the reagent and sample manager:
 - Replace with a fresh aliquot of sample.
- Refer to the Alinity s HTLV I/II Calibrator Kit, Assay Control Kit, and/or Release Control Kit package inserts for preparation and usage.
- For general operating procedures, refer to the Alinity s System Operations Manual, Section 5.
- For optimal performance, it is important to perform routine maintenance as described in the Alinity s System Operations Manual, Section 9. Perform maintenance more frequently when required by laboratory procedures.

Calibration
For instructions on performing a calibration, refer to the Alinity s System Operations Manual, Section 5.

Three replicates of Alinity s HTLV I/II Calibrator 1 are automatically tested by the system. The calibrator must be priority loaded. Each assay control must be tested to evaluate the assay calibration. Once a calibration is accepted and stored, it may be used for 14 days. During this time, all subsequent samples may be tested without further calibration unless:
- A reagent kit with a new lot number is used.
- Daily quality control results are outside of quality control limits used to monitor and control system performance.

This assay may require recalibration after maintenance to critical parts or subsystems or after service procedures have been performed.

Quality Control Procedures

Assay Controls
The Alinity s HTLV I/II Assay Controls must be tested once every 24 hours when the system is being used.

Assay control values must be within the ranges specified in the Alinity s HTLV I/II Assay Control Kit package insert. When the assay control values are within range, sample results are generated, and a valid release control result is required to release test results. If an assay control value is not within range, sample results are not generated for in-process or scheduled samples. For troubleshooting information, refer to the Alinity s System Operations Manual, Section 10.

Release Controls
The Alinity s HTLV I/II Release Control must be tested in order to release test results.

The release control is tested at user-defined intervals. For configuring the release control, refer to the Alinity s System Operations Manual, Section 2. For manually ordering the release control, refer to the Alinity s System Operations Manual, Section 5.

The release control must meet specifications defined in the Alinity s HTLV I/II Release Control Kit package insert in order to validate the system functionality and release test results. If the release control does not meet specifications, refer to the Alinity s System Operations Manual, Section 10, for additional information.

Other Controls
Additional controls may be tested at operator’s discretion in accordance with local, state, and/or federal regulations or accreditation requirements and your laboratory’s quality control policy. For additional information on configuring customer controls, refer to the Alinity s System Operations Manual, Section 2.

Invalidate controls: Additional controls may be tested anywhere within a run as an invalidate control. Specifications may be assigned to invalidating controls. If an invalidate control fails to meet assigned specifications, no sample results are calculated or provided by the system. When an invalidate control meets assigned specifications, sample processing continues, and a valid release control result is required to release test results.

Non-validating controls: Additional controls may be tested anywhere within a run as a non-validating control. Specifications may be assigned to non-validating controls. A valid release control result is required to release test results. If the user-assigned specifications for the non-validating control(s) are not met and the release control specifications are met, there will be no effect on sample processing. In this case, reactive sample results must not be considered invalid.

Quality Control Guidance
Refer to “Basic QC Practices” by James O Westgard, Ph.D. for guidance on laboratory quality control practices.

RESULTS

Calculation
The Alinity s System calculates results for the Alinity s HTLV I/II assay using the ratio of the sample RLU to the cutoff RLU (S/CO) for each specimen and control.

Cutoff RLU = Calibrator 1 Mean RLU x 0.40

The cutoff RLU is stored for each reagent lot calibration.

S/CO = Sample RLU/Cutoff RLU

Abbott
Interpretation of Results
The cutoff is 1.00 S/CO.

Initial Results
<table>
<thead>
<tr>
<th>Initial Result (S/CO)</th>
<th>Interpretation</th>
<th>Retest Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.00</td>
<td>Nonreactive</td>
<td>No retest required. Specimen considered negative for antibodies to HTLV I and HTLV II.</td>
</tr>
<tr>
<td>≥ 1.00</td>
<td>Reactive</td>
<td>Retest in duplicate.</td>
</tr>
</tbody>
</table>

Retest Procedure

<table>
<thead>
<tr>
<th>Retest Results (S/CO)</th>
<th>Final Results</th>
<th>Final Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both results < 1.00</td>
<td>Nonreactive</td>
<td>Specimen considered negative for antibodies to HTLV I and HTLV II.</td>
</tr>
<tr>
<td>One or both results ≥ 1.00</td>
<td>Repeatedly Reactive</td>
<td>Specimen should be further tested by supplemental methods.</td>
</tr>
</tbody>
</table>

Supplemental methods may include other HTLV I/II specific immunoassays and/or immunoblot assays per FDA regulations. Customers outside the US must follow their country’s government recommendations and regulations for specimens found to be repeatedly reactive.

SPECIFIC PERFORMANCE CHARACTERISTICS

Representative performance data are provided in this section. Results obtained in individual laboratories may vary.

Reproducibility

A study was performed based on guidance from CLSI EP15-A2. Testing was conducted using 3 lots of the Alinity® HTLV I/II Reagent Kit, Calibrator Kit, Assay Control Kit, and Release Control Kit. Panel members and controls were tested twice a day for 5 days in replicates of 4 at 3 sites.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Mean S/CO</th>
<th>Within-Run SD</th>
<th>Within-Run %CV</th>
<th>Between-Run SD</th>
<th>Between-Run %CV</th>
<th>Between-Day SD</th>
<th>Between-Day %CV</th>
<th>Within-Laboratory SD</th>
<th>Within-Laboratory %CV</th>
<th>Between-Site SD</th>
<th>Between-Site %CV</th>
<th>Between-Lot SD</th>
<th>Between-Lot %CV</th>
<th>Reproducibility %CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low HTLV I Antibody</td>
<td>360</td>
<td>1.71</td>
<td>0.057</td>
<td>3.3</td>
<td>0.011</td>
<td>0.7</td>
<td>0.000</td>
<td>0.0</td>
<td>0.058</td>
<td>3.4</td>
<td>0.036</td>
<td>2.1</td>
<td>0.066</td>
<td>3.9</td>
<td>0.097</td>
</tr>
<tr>
<td>High HTLV I Antibody</td>
<td>359</td>
<td>8.68</td>
<td>0.288</td>
<td>3.3</td>
<td>0.000</td>
<td>0.0</td>
<td>0.058</td>
<td>0.7</td>
<td>0.294</td>
<td>3.4</td>
<td>0.037</td>
<td>0.4</td>
<td>0.496</td>
<td>5.7</td>
<td>0.582</td>
</tr>
<tr>
<td>Low HTLV II Antibody</td>
<td>360</td>
<td>1.67</td>
<td>0.058</td>
<td>3.4</td>
<td>0.015</td>
<td>0.9</td>
<td>0.000</td>
<td>0.0</td>
<td>0.059</td>
<td>3.6</td>
<td>0.006</td>
<td>0.4</td>
<td>0.134</td>
<td>8.0</td>
<td>0.147</td>
</tr>
<tr>
<td>High HTLV II Antibody</td>
<td>360</td>
<td>8.39</td>
<td>0.302</td>
<td>3.6</td>
<td>0.070</td>
<td>0.8</td>
<td>0.036</td>
<td>0.4</td>
<td>0.312</td>
<td>3.7</td>
<td>0.068</td>
<td>0.8</td>
<td>0.827</td>
<td>9.9</td>
<td>0.893</td>
</tr>
<tr>
<td>Positive Control 1 (HTLV I)</td>
<td>360</td>
<td>2.45</td>
<td>0.081</td>
<td>3.3</td>
<td>0.000</td>
<td>0.0</td>
<td>0.018</td>
<td>0.7</td>
<td>0.083</td>
<td>3.4</td>
<td>0.000</td>
<td>0.0</td>
<td>0.181</td>
<td>7.4</td>
<td>0.200</td>
</tr>
<tr>
<td>Positive Control 2 (HTLV II)</td>
<td>360</td>
<td>2.85</td>
<td>0.100</td>
<td>3.5</td>
<td>0.000</td>
<td>0.0</td>
<td>0.006</td>
<td>0.2</td>
<td>0.100</td>
<td>3.5</td>
<td>0.000</td>
<td>0.0</td>
<td>0.183</td>
<td>6.4</td>
<td>0.212</td>
</tr>
<tr>
<td>Negative Control</td>
<td>360</td>
<td>0.18</td>
<td>0.021</td>
<td>NA</td>
<td>0.000</td>
<td>NA</td>
<td>0.007</td>
<td>NA</td>
<td>0.022</td>
<td>NA</td>
<td>0.007</td>
<td>NA</td>
<td>0.024</td>
<td>NA</td>
<td>0.034</td>
</tr>
</tbody>
</table>

%CV = Coefficient of Variation expressed as a percentage; N = Number of Replicates; NA = Not Applicable; %CVs are not meaningful when S/CO approaches zero; SD = Standard Deviation

* Includes within-run, between-run, and between-day variability.

** Includes within-run, between-run, between-day, between-site, between-lot and the site-lot interaction variability.

Some results may contain information in the Flags field. For a description of the flags that may appear in this field, refer to the Alinity® System Operations Manual, Section 5.

LIMITATIONS OF THE PROCEDURE

- Potential interference has not been evaluated for substances other than those described in the SPECIFIC PERFORMANCE CHARACTERISTICS - Interference section of this package insert.
- False reactive results can be expected with any test kit. Falsely elevated results may be observed due to non-specific interactions (refer to the SPECIFIC PERFORMANCE CHARACTERISTICS section of this package insert).
- Although the association of infectivity and the presence of antibodies to HTLV I/HTLV II is strong, it is recognized that presently available methods for HTLV I/HTLV II antibody detection are not sensitive enough to detect all potentially infectious units of blood or possible cases of HTLV I/HTLV II infection. A nonreactive test result does not exclude infection. Refer to the SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS section of this package insert for specimen limitations.
Specificity
A total of 9365 fresh serum specimens and 6512 fresh plasma specimens from volunteer whole blood donors were collected at 3 distinct blood centers. The initial and repeat reactive rates for the serum specimens were 0.03% (3/9365) and 0.03% (3/9365), respectively. The initial and repeat reactive rates for the plasma specimens were 0.03% (2/6512) and 0.03% (2/6512), respectively. Repeatedly reactive specimens were further tested using a supplemental HTLV immunoblot. Based on supplemental test results, 1 specimen was positive, 2 specimens were negative, and 2 specimens were indeterminate. Specificity based on assumed zero prevalence of antibody to HTLV I/II in whole blood donors was estimated in this study to be 99.99% (15 864/15 866) with a 95% confidence interval of 99.95% to 100.00%.

<table>
<thead>
<tr>
<th>Specimen Category</th>
<th>Number Tested</th>
<th>Number IR (% of Total) (95% CI)</th>
<th>Number RR (% of Total) (95% CI)</th>
<th>Number Positive by Supplemental Testing (% of RR) (95% CI)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteer Blood Donors - Serum</td>
<td>9365</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(33.33) (9366/9361)</td>
<td>(99.94 - 100.00)</td>
</tr>
<tr>
<td>Volunteer Blood Donors - Plasma</td>
<td>6512</td>
<td>(0.00 - 0.11)</td>
<td>(0.00 - 0.11)</td>
<td></td>
<td>(99.91 - 100.00)</td>
</tr>
<tr>
<td>Total Donors</td>
<td>15 877</td>
<td>(0.01 - 0.07)</td>
<td>(0.01 - 0.07)</td>
<td>(15 864/15 866)</td>
<td>(99.95 - 100.00)</td>
</tr>
</tbody>
</table>

IR = Initially Reactive, RR = Repeatedly Reactive, CI = Confidence Interval

- Specimens determined to be positive (n = 1) or indeterminate (n = 2) by supplemental testing were excluded from the specificity calculations. Additionally, there were 8 specimens that were Alinity’s HTLV I/II nonreactive and indeterminate by supplemental testing that were excluded from the specificity calculations.

For total donors, IR rate not reactive on retest was estimated to be 0.00% (0/15 872) with a 95% confidence interval of 0.00% to 0.02%. IR Rate Not Reactive on Retest = 100% × (Number of IR - Number of RR) / (Number Tested - Number of RR)

Sensitivity
A total of 1717 specimens from the categories shown in the table below were tested using the Alinity’s HTLV I/II assay at 3 clinical sites. Repeatedly reactive specimens from individuals with HTLV I/II associated disease, individuals at increased risk of HTLV I/II infection, and individuals from HTLV I/II endemic areas were tested using a supplemental HTLV immunoblot. Sensitivity was estimated to be 100.00% (706/706) with a 95% confidence interval of 99.48% to 100.00% for preselected positive specimens and HTLV I/II associated disease.

<table>
<thead>
<tr>
<th>Specimen Category</th>
<th>Number Tested</th>
<th>Number IR (% of Total) (95% CI)</th>
<th>Number RR (% of Total) (95% CI)</th>
<th>Number Positive by Supplemental Testing (% of RR) (95% CI)</th>
<th>Sensitivity (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preselected Anti-HTLV I Positive</td>
<td>461</td>
<td>(100.00)</td>
<td>(100.00)</td>
<td>(461/461)</td>
<td>(99.20 - 100.00)</td>
</tr>
<tr>
<td>Preselected Anti-HTLV II Positive</td>
<td>141</td>
<td>(100.00)</td>
<td>(100.00)</td>
<td>(141/141)</td>
<td>(97.42 - 100.00)</td>
</tr>
<tr>
<td>Preselected Anti-HTLV I/II Positive Undifferentiated</td>
<td>4</td>
<td>(100.00)</td>
<td>(100.00)</td>
<td>(4/4)</td>
<td>(NA)</td>
</tr>
<tr>
<td>Individuals with HTLV I/II Associated Disease</td>
<td>100</td>
<td>(100.00)</td>
<td>(100.00)</td>
<td>(100/100)</td>
<td>(96.38 - 100.00)</td>
</tr>
</tbody>
</table>

IR = Initially Reactive; RR = Repeatedly Reactive

- The specimens included the following: Anti-HIV-1/HIV-2 Positive (10), Anti-HCV Positive (10), HBV Positive (10), Co-infected CMV/EBV/HSV (10), Anti-T. pallidum Positive (10), Anti-VZV Positive (10), Rheumatoid Factor Positive (10), Anti-ds DNA Positive (10), Pregnant Females (14), Multiparous Females (10), Hyper IgG/IgM (10), Influenza Vaccine Recipients (10), Hemodialysis Patients (10), HAMA Positive (10), E. coli Infection (10), Heterophilic Antibody Positive (12), Anti-gonococcus Positive (9), Anti-C. trachomatis Positive (10), Anti-T. gondii Positive (10), Anti-nuclear Antibody Positive (10), Fungal (Yeast) Infection (10), and Anti-Rubella Positive (10).

- One anti-HCV positive specimen was positive by supplemental testing.
In addition, a negative and two positive controls were spiked with biotin to a concentration of 4250 ng/mL. No interference was observed using the Alinity’s HTLV I/II assay.

The effect of potentially interfering substances has only been evaluated for those listed in this package insert.

PERFORMANCE CHARACTERISTICS OF CADAVERIC SPECIMEN TESTING

Reproducibility
Twenty-two nonreactive cadaveric donor serum specimens and 23 nonreactive living donor serum specimens were spiked with human plasma reactive for anti-HTLV I or anti-HTLV II to create low-level reactive specimens.

Each specimen was tested once per day for 6 days using each of 3 lots of the Alinity’s HTLV I/II Reagent Kit. Total %CV values were determined.

<table>
<thead>
<tr>
<th>Potentially Interfering Substance</th>
<th>Interferent Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugated Bilirubin</td>
<td>≤ 20 mg/dL</td>
</tr>
<tr>
<td>Unconjugated Bilirubin</td>
<td>≤ 20 mg/dL</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≤ 500 mg/dL</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>≤ 3000 mg/dL</td>
</tr>
<tr>
<td>Total Protein</td>
<td>≤ 12 g/dL</td>
</tr>
</tbody>
</table>

No interference was observed using the Alinity’s HTLV I/II assay.

In addition, a negative and two positive controls were spiked with biotin to a concentration of 4250 ng/mL. No interference was observed using the Alinity’s HTLV I/II assay.

The effect of potentially interfering substances has only been evaluated for those listed in this package insert.

CADAVERIC SPECIMEN TESTING

Reproducibility
Twenty-two nonreactive cadaveric donor serum specimens and 23 nonreactive living donor serum specimens were spiked with human plasma reactive for anti-HTLV I or anti-HTLV II to create low-level reactive specimens.

Each specimen was tested once per day for 6 days using each of 3 lots of the Alinity’s HTLV I/II Reagent Kit. Total %CV values were determined.

Specificity
Specificity was determined by testing 55 cadaveric serum specimens and 55 living donor serum specimens. Each specimen was tested once using each of 3 lots of the Alinity’s HTLV I/II Reagent Kit.

<table>
<thead>
<tr>
<th>Specimen Category</th>
<th>Lot</th>
<th>Nonreactive</th>
<th>Reactive</th>
<th>Specificity (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadaveric</td>
<td>1</td>
<td>55</td>
<td>0</td>
<td>100.00 (93.51 - 100.00)</td>
</tr>
<tr>
<td>Living Donor</td>
<td>1</td>
<td>55</td>
<td>0</td>
<td>100.00 (93.51 - 100.00)</td>
</tr>
<tr>
<td>Living Donor</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td>100.00 (93.51 - 100.00)</td>
</tr>
<tr>
<td>Living Donor</td>
<td>3</td>
<td>55</td>
<td>0</td>
<td>100.00 (93.51 - 100.00)</td>
</tr>
</tbody>
</table>

CI = Confidence Interval

Analytical Sensitivity
Cadaveric serum specimens and living donor serum specimens were spiked with human plasma reactive for anti-HTLV I or anti-HTLV II to create low-level reactive specimens. Each specimen was tested once, within 24 hours of spiking, using each of 3 lots of the Alinity’s HTLV I/II Reagent Kit. All specimens were reactive on all 3 reagent lots.

<table>
<thead>
<tr>
<th>Specimen Category</th>
<th>Lot</th>
<th>Number of Specimens</th>
<th>Mean S/CO</th>
<th>Sensitivity (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadaveric</td>
<td>1</td>
<td>52</td>
<td>4.50</td>
<td>100.00 (93.15 - 100.00)</td>
</tr>
<tr>
<td>Living Donor</td>
<td>1</td>
<td>53</td>
<td>5.12</td>
<td>100.00 (93.28 - 100.00)</td>
</tr>
<tr>
<td>Living Donor</td>
<td>2</td>
<td>53</td>
<td>5.37</td>
<td>100.00 (93.28 - 100.00)</td>
</tr>
<tr>
<td>Living Donor</td>
<td>3</td>
<td>53</td>
<td>5.12</td>
<td>100.00 (93.28 - 100.00)</td>
</tr>
</tbody>
</table>

CI = Confidence Interval

a) Cadaveric serum specimens were collected up to 14.8 hours after death.

Cadaveric Specimen Storage
Cadaveric specimen storage was determined by testing a minimum of 12 low-level reactive specimens, prepared by spiking nonreactive cadaveric serum specimens to a target S/CO value near the cutoff with human plasma reactive for anti-HTLV I and anti-HTLV II, and a minimum of 12 nonreactive cadaveric serum specimens. Each specimen was tested at Day 0, and then subjected to either 2 to 8°C storage for 14 days, room temperature (15 to 30°C) storage for 3 days, −20°C or colder storage for 3 months, or 6 freeze/thaw cycles. Nonreactive specimens were evaluated by calculating the differences between the mean S/CO of Day 0 and the mean S/CO of each storage condition and related timepoint. Reactive specimens were evaluated by calculating the percent differences between the mean S/CO of Day 0 and the mean S/CO of each storage condition and related timepoint. There were no changes to the interpretation; the data demonstrate that cadaveric serum specimens can be stored at the following conditions when tested using the Alinity’s HTLV I/II assay.

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>Timepoint</th>
<th>Nonreactive Specimens Upper Limit of 2-sided 95% CI of Differences</th>
<th>Anti-HTLV I Reactive Specimens Lower Limit of 2-sided 95% CI of Differences</th>
<th>Anti-HTLV II Reactive Specimens Lower Limit of 2-sided 95% CI of Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Temperature</td>
<td>3 days</td>
<td>0.02 S/CO</td>
<td>-10.0%</td>
<td>-2.4%</td>
</tr>
<tr>
<td>(15 to 30°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 8°C</td>
<td>14 days</td>
<td>0.01 S/CO</td>
<td>-2.7%</td>
<td>-0.7%</td>
</tr>
<tr>
<td>-20°C or colder</td>
<td>3 months</td>
<td>0.00 S/CO</td>
<td>-9.9%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Freeze/Thaw</td>
<td>6 cycles</td>
<td>0.02 S/CO</td>
<td>-10.8%</td>
<td>-10.0%</td>
</tr>
</tbody>
</table>

a) Cadaveric serum specimens were collected up to 22.6 hours after death.

b) Cadaveric serum specimens were collected up to 21.4 hours after death.
BIBLIOGRAPHY

